

MIN / 2021 - 210196

01st June, 2021

To, Director Ministry of Environment & Forests

Regional Office, Western Region Kendriya Paryavaran Bhavan Link Road No. 3

E - 5, Ravishankar Nagar

Bhopal – 462 016

Sub: Compliance report of additional limestone deposit over 66.434 ha area at village Manakahari, Tehsil Rampur Baghelan, Dist. Satna of M/s Prism Johnson Ltd.

Ref: Your letter no. J - 11015 / 8 / 2000 - I A. II (M) dated 14.2.2001.

Dear Sir,

We are sending enclosed herewith the six monthly compliance report (Period of October-2020 to March-2021) of the environmental clearance granted for additional limestone deposit at village Manakahari, Tehsil Rampur Baghelan, Dist. Satna (M.P.) vide the letter no. J-11015/8/2000-IA. II (M) dated 14.2.2001 along with necessary enclosures.

We hope you will find the same in order.

Thanking you.

Yours faithfully, For, Prism Johnson Ltd.

Mines Manager

Prism Cement Limestone Mines

Encl: As above

PRISM JOHNSON LIMITED

(Cement Division)

Works: Village Mankahari, P.O.-Bathia, Dist. Satna - 485 111 (M.P.) India T: +91-07672-275301 / 302600 Corres. Add.: 'Rajdeep', Rewa Road, Satna - 485 001 (M.P.) India. T: +91-07672-402726 Registered Office: Prism Johnson Limited, 305, Laxmi Niwas Apartments, Ameerpet. Hyderabad - 500 016, India. w: www.prismjohnson.in, www.cement.prismjohnson.in, E: info@prismjohnson.in

CIN: L26942TG1992PLC014033

COMPLIANCE OF CONDITIONS AS STIPULATED BY MoEF VIDE LETTER NO. J -11015 / 8 / 2000 - I A. II (M) DATED 14.2.2001 FOR ADDITIONAL LIMESTONE DEPOSIT OVER 66.434 HECT. AREA IN VILLAGE MANAKAHARI, TEHSIL RAMPUR BAGHELAN, DIST. SATNA (M.P.)

1. The environmental clearance would be applicable **66.434 hect**. lease area

A. Specific Conditions :

- Mining should be carried out 500 m away ⇒ from the Rewa – Satna railway track.
- (ii) The topsoil should be stacked properly with adequate measures at earmarked site. It should be used for reclamation and rehabilitation of mined out area.
- (iii) OB dumps should be stacked at earmarked ⇒ dump site(s) only on temporary basis.
 Concurrent back filling and reclamation should be carried out from the 3rd year of operations.
- (iv) A green belt of adequate width by planting the native plant species all around the ML area, roads, OB dump sites etc. should be raised in consultation with local DFO / Agriculture Department.

 No mining activities are carried out within 500 m vicinity of Rewa – Satna Railway track.

Topsoil is being used for reclamation and rehabilitation of the mined out area. No outside stacking is being done.

Reclamation of the mined out area has been started from 3rd year of operations as stipulated in the condition. 12.33 Ha. of mined out area has been reclaimed up to March 2021

No waste rock generated from October 2020 to March 2021 to be used in backfilling of the mined out area.

⇒ Green belt of adequate width is being developed. Year wise details of the plantation carried out so far are given in Annexure I.

A rose garden has been developed in the colony.

A nursery has also been developed where various types of saplings are prepared for plantation.

Saplings planted October 2020 to March 2021 were 1000 and cumulative plantation till March 2021 is 24,556.

(v) Drill should be operated with dust extractors ⇒ Drill m or only wet drilling should be adopted.

Drill machine IBH 10 of Atlas Copco is in operation. This machine is fitted with water sprinkler that settles the dust generated at the time of drilling and thus prevents it from going into the atmosphere.

- (vii) Check dam and siltation ponds of appropriate size should be constructed to arrest silt and sediments flow from OB and mineral dumps. The water so collected should be utilized for watering mine area, roads, greenbelt, etc. The drains should be regularly desilted and maintained properly.
- (viii) Regular monitoring of ground water level ⇒ and quality should be carried out by establishing a network of existing wells and constructing new piezometers. Monitoring should be done four times a year– premonsoon April / May, Monsoon (August), Post–monsoon (November) and winter (January). Data thus collected should be sent at regular intervals to MoEF.
- (ix) Crusher should be installed and operated ⇒
 with adequate capacity de-dusting arrangement
- (x) A detailed mine decommissioning plan ⇒ should be submitted to MoEF 5 year in advance for approval.

B. GENERAL CONDITIONS

- No change on mining technology and scope of working should be made without prior approval of the Ministry of Environment and Forests.
- No change in the calendar plan including excavation, quantum of limestone, waste / OB dumps should be made.
- (iii) Four ambient air quality monitoring stations should be established in the core zone as well as buffer zone for SPM, RPM, SO₂, NO_X and CO monitoring. Location of the ambient air quality stations should be decided based on the meteorological data, topographical features and environmentally sensitive targets in consultation with the State Pollution Control Board.
- (iv) Data of ambient air quality should be regularly submitted to the Ministry including

- ⇒ Garland drain and siltation pond have been constructed to arrest the silt and sediment flow.
 - Being done.

Ground water level monitoring data of post -monsoon (Month wise), have been given in **Annexure II.**

Quality monitoring report of the ground water of the wells/bore holes is given in **Annexure III.**

Crusher has already been installed with adequate capacity of de-dusting arrangement like bag - filters. Continuous water sprinkling arrangement at crusher hopper has also been made for suppressing the dust generated during unloading of the mineral in crusher hopper.

Will be submitted.

- \Rightarrow No changes have been made.
- \Rightarrow No changes have been made.

Four different monitoring stations are established and air quality is monitored twice in a month.

Being done regularly and submitted to the ministry and other government

its Regional Office at Bhopal and the State Pollution Control Board / Central Pollution Control Board once in six months.

(v) Adequate measures for control of fugitive emissions should be taken during drilling and blasting operations, loading and transportation of minerals etc.

agencies. Ambient air quality monitoring results from October 2020 to March 2021 have been given in Annexure IV.

- ⇒ Adequate measures for control of fugitive emission are being taken during drilling and blasting operations, loading and transportation of mineral etc.
 - Drill machine is operated with inbuilt dust extractor, which arrests the dust generated during the drilling operation.
 - Water sprinkling is done on the blasted muck after blasting to reduce the dust generation during the loading operation.
 - Water spraying is continuously done on haul roads.
- Being taken.

Noise monitoring reports from October 2020 to March 2021 have been given in Annexure –V.

Personal protective equipments are being provided to all personnel working in dusty area at regular intervals.

Time to time, training and information on health and safety aspects are being imparted by the HRD Deptt. as well as at vocational training centre of the Deptt.

All employees undergo periodical medical examination under Mines Act at regular intervals.

Envoirmental Expenditure of 2020-21

	Particulars	Expenditure (In lakh)
1	Air Pollution Monitoring	0.24
2	Noise Monitoring	0.1
3	Plantation	494
4	Dust Control Measure	4.94
	Total	5.24

- Adequate measures should be taken for ⇒ (vi) control of noise levels below 85 dB in the work environment.
- (vii) Personnel working in dusty areas should wear protective respiratory devices and they should also be provided with adequate training and information on safety and health aspects.

Occupational health surveillance programme of the workers should be undertaken periodically to observe any contractions due to exposures to dust and take corrective measures, if needed.

- The funds earmarked for environmental ⇒ (viii) protection measures should be kept in separate account and not diverted for other purpose. Year wise expenditure should be reported to the Ministry of Environment & Forests.
- (ix) The Regional Office of this Ministry located ⇒ Photocopies of Rapid EIA – EMP

at Bhopal shall monitor compliance of the stipulated environmental safeguards. The project authority should send one set of EIA / EMP Report and Mining Plan to them and extend full co – operation to the officer (s) of the Regional Office by furnishing the requisite data / information / monitoring report.

- (x) The Project authority should inform to the Regional Office located at Bhopal as well as to the Ministry of Environment & Forests regarding date of financial closures and final approval of the project by the concerned authorities and the date of start of land development work.
- (xi) A copy of the clearance letter will be marked to concerned Panchayat / Local NGO, if any, from whom any suggestion / representation has been received while processing the proposal.
- (xii) State Pollution Control Board should display ⇒ A a copy of the clearance letter at the Regional Office, District Industry Centre and Collector's Office / Tehsildar's Office for 30 days.
- (xiii) The Project authority should advertise at least in two local newspapers widely circulated around the project, one of which shall be in the vernacular language of the locality concerned informing that the project has been accorded environmental clearance and the copy of the clearance letter is available with the state Pollution Control Board and may also be seen at the web site of the Ministry of Environment and Forests at http://envfor.nic.in.

Report and Mining Plan have already been sent.

Co-operation is being extended to the inspecting Officials.

> Agreed.

Agreed.

⇒

Agreed

The advertisement was published in two of the local newspapers viz. 'Dainik Bhaskar' and 'Naw Swadesh' which was earlier informed vide our letter no. MIN / 104 / 5820A dated 27.3.02.

PRISM JOHNSON LIMITED

SUMMARY OF AFFORESTATION (LEASE WISE)

Sr. No.	Year	Total No. of Plants	ML area 253.326 Ha.	ML area 66.434 Ha.	ML area 772.067 Ha.	ML area 99.416 Ha.	ML area 791.004 Ha.	ML area 117.594 Ha.	ML area 512.317 Ha.	ML area 40.236 Ha
			No. of Plant	No. of Plant	No. of Plant	No. of Plant	No. of Plant	No. of Plant	No. of Plant	No. of Plan
1	1996-97	3702	1702				2000			
2	1997-98	5023	2000				3023			
3	1998-99	7775	3700				4075			
4	1999-00	8830	4857				3973			
5	2000-01	7899	4344				3555			
6	2001-02	5662	2265	1132			2265			
7	2002-03	9686	3874	1937			3875			
8	2003-04	17612	7044	3522			7046			
9	2004-05	4910	1964	982			1964			
10	2005-06	3693	1477	739	1477					
11	2006-07	6500	2600	1300	2600					
12	2007-08	3600	1440	720	1440					
13	2008-09	5520	2208	1104	2208					
14	2009-10	5000	2000	1000	2000					
15	2010-11	8200	3280	1640	3280					
16	2011-12	7000	2450	1400	2450	700				
17	2012-13	5085	2000	800	2000	285				
18	2013-14	7080	2500	680	2500	1400				
19	2014-15	8600	2500	1600	2500	2000				
20	2015-16	25700	9000	1000	14000	500		1000	200	
21	2016-17	22000	10000	1000	5000	0.00		1000	5000	
22	2017-18	22000	6000	1000	7000	2000		1000	5000	1000
23	2018-19	21000	6000	1000	8000	1000		1000	3000	1000
24	2019-20	75889	9073	1000	19816	2000		1000	37000	6000
25	2020-21	51140	11190	1000	29950	3000		500	5000	500
То	otal	349106	105468	24556	106221	12885	31776	5500	55200	8500

220

ECOMEN LABORATORIES PVT. LTD.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

5

TEST REPORT NO: ECO LAB/RW/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company Address of the Company	:	M/s. Prism Johnson Ltd. Village Mankahari, Tehsil Rampur Baghelan Distt.Satna (M.P.)
Sampling Method Sample Collected by Sample Quantity Date of Sampling Date of Receiving	: : : : : :	APHA/ IS: 3025 Mr.Maan Singh As per requirement. 12.11.2020 15.11.2020 15.11.2020 to 25.11.2020
Date of Analysis Source of Sample	:	Raw Water (WHRS)

	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)		
SI. No.					Desirable	Permissible	
			<5.0	5-100	5.00	15.0	
1.	Colour (Hazen unit)	APHA, 23" Ed. 2017, 2120 B	BDL	1 - 100	1.0	5.0	
2.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	7,31	2.0 -12	6.5-8.5	No Relax.	
3.	pH	APHA, 23" Ed. 2017, 4500H+ A+B		1-2000	-	-	
4.	Conductivity (µmhos/cm)	APHA, 23 ⁻⁴ Ed. 2017, 2510-A + B	833.0		500	2000	
5.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	411.0	5 - 5000		600	
-		APHA, 23" Ed. 2017, 2320 A+ B	108.0	5-1500	200		
6.	Alkalinity (mg/l)	APHA, 23" Ed. 2017, 2340 A+C	180.0	5-1500	200.0	600.0	
7.	Total Hardness as CaCO ₂ (mg/l)	APHA, 23" Ed. 2017, 2340 A+C	131.76	5-1500	200.0	600.0	
8.	Non Corbonate as CaCO3	APHA, 23 rd Ed. 2017, 3500 Ca A+B	49.6	5-1000	75.0	200.0	
9.	Calcium as Ca (mg/l)	APHA, 23" Ed. 2017, 3500 Mg A+B	13.6	5-1000	30.0	100.0	
10.	Magnesium as Mg (mg/l)		16.3	1-100			
11.	Sodium as Na (mg/l)	APHA, 23rd Ed. 2017, 3500 Na, A+B		1-100			
12.	Potassium as K (mg/l)	APHA, 23rd Ed. 2017, 3500 K, A+B	1.02			1000.0	
13.	Chloride as Cl (mg/l)	APIIA, 23" Ed. 2017, 4500 CI A+B	34.0	5-1000	250.0		
14.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	1.17	0.05-10	1.0	1.5	
15	Sulfate as SO4 (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO4 ² E	31.0	1.0 -250	200.0	400.0	
16.		APHA, 23" Ed. 2017, (4500 SiOr-C)	18.0	0.1-50	-	-	
17.	Nitrate Nitrogen as NO3 (mg/l)	APHA, 23" Ed. 2017, 4500-NOJ B	5.20	5.0 - 100	45.0	No Relax.	
18.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.32	0.02-50	0.3	No Relax.	

*The result are related only to item tested. BDL = Below Detection Limit

astymos Analyst

Authorized signatory Ecomen Laboratories Pvt. Ltd. Flat No.-8, 2nd Floor, Arif Chamber-V Sector-H, Aliganj, Lucknow-226024 Ph.-2746282, Fax:2745726

ality Manager

ECOMEN

Flat No. 8, 2nd Floor, Arif Chamber-V. Sector H, Aliganj, Lucknow - 225 024 LABORATORIESP Phone No. : (91-522) 2745282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Baghai Lime Stone Drinking water (Mine Site Office)
Sample ID Code	: ELW-12585

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDA 10500:1991(Re	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	BDL	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.44	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	393.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	160.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	188.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	43.2	5-1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	19.44	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	22.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.37	0.05-10	1.0	1.5
13.	Sulfate as SO4 (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	37.4	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ B	9.65	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.16	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.23	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017(3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.20	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E. <i>coli</i> (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ECOMEN

Flat No. 8, 2nd Floor, Anif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 LABORATORIESP Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

. Teveninargaval@gmain.com, website: www.ecomerism, citra - Di 42100-1303-110001,031111 - 03AAACE607611

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	:	M/s. Prism Johnson Ltd.
Address of the Company	:	Village Mankahari, Tehsil Rampur Baghelan
		Distt.Satna (M.P.)
Sampling Method	:	APHA/ IS: 3025
Sample Collected by	:	Mr.Maan Singh
Sample Quantity	:	As per requirement.
Date of Sampling	:	12.11.2020
Date of Receiving	:	15.11.2020
Date of Analysis	:	15.11.2020 to 25.11.2020
Source of Sample	:	Plant Site - Bore Well
Sample ID Code	:	ELW-12586

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDA 10500:1991(R	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	BDL	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.29	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	532.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	128.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	192.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	48.0	5-1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	17.49	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	36.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.35	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	92.3	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	10.23	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.11	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.25	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.15	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Analyst

Authorized Signatory

ECOMEN

Flat No. 8, 2nd Floor, Arif Chamber-V. Sector H, Aliganj, Lucknow - 225 024 LABORATORIESP Phone No. : (91-522) 2745282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Bagahai Village – Hand Pump
Sample ID Code	: ELW-12587

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)		
					Desirable	Permissible	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0	
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.3	1 - 100	1.0	5.0	
5.	pH	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.42	2.0 -12	6.5-8.5	No Relax.	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	496.0	5 - 5000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	164.0	5-1500	200	600	
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	176.0	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	46.4	5-1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	14.58	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	30.0	5-1000	250.0	1000.0	
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.26	0.05-10	1.0	1.5	
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	51.5	1.0 -250	200.0	400.0	
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ B	12.1	5.0 - 100	45.0	No Relax.	
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30	
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.13	0.02-50	5.0	15	
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.	
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax	
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax	
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05	
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax	
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.	
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5	
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	BDL	0.2 - 10	0.5	1.0	
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2	
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0	
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax	
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-	
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.20	0.02-50	0.3	No Relax.	
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent	
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent	

*The result are related only to item tested. BDL = Below Detection Limit

Analyst

Authorized Signatory

ecoMen LABORATORIES PVT LTD.

Flat No. 8, 2nd Floor, Arif Chamber-V. Sector H, Aliganj, Lucknow - 225 024 LABORATORIESP Phone No. : (91-522) 2745282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20

TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	:	M/s. Prism Jol	hnson Ltd.		
Name of the Company	:	M/s. Prism Jol	hnson Ltd.		
Address of the Company	:	Village Manka	ahari,Tehsil Ra	mpur Bagh	elan
		Distt.Satna (M	1.P.)		
Sampling Method	:	APHA/ IS: 302	25		
Sample Collected by	:	Mr.Maan Sing	gh		
Sample Quantity	:	As per require	ement.		
Date of Sampling	:	12.11.2020			
Date of Receiving	:	15.11.2020			
Date of Analysis	:	15.11.2020 to 1	25.11.2020		
Source of Sample	:	Prism Lime St	tone Mine Drin	king Water	(Site Office)
Sample ID Code	:	ELW-12588		-	

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)		
					Desirable	Permissible	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0	
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	BDL	1 - 100	1.0	5.0	
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.46	2.0 -12	6.5-8.5	No Relax.	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	432.0	5 - 5000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	156.0	5-1500	200	600	
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	240.0	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	59.2	5-1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	22.35	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	52.0	5-1000	250.0	1000.0	
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.31	0.05-10	1.0	1.5	
13,	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	86.3	1.0 - 250	200.0	400.0	
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ B	7.32	5.0 - 100	45.0	No Relax.	
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30	
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-50	5.0	15	
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.	
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax	
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax	
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05	
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax	
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.	
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5	
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.25	0.2 - 10	0.5	1.0	
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2	
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0	
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax	
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-	
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.23	0.02-50	0.3	No Relax.	
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent	
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent	

Authorized Signatory

...

ECOMEN

Flat No. 8, 2nd Floor, Arif Chamber-V. Sector H, Aliganj, Lucknow - 225 024 LABORATORIESP Phone No. : (91-522) 2745282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company :	: M/s. Prism Johnson Ltd.
Address of the Company :	: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis :	: 15.11.2020 to 25.11.2020
Source of Sample :	: MedhiVillage -Hand Pump
Sample ID Code	: ELW-12589

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.21	1 - 100	1.0	5.0
5.	pH	APHA, 23 rd Ed. 2017, 4500H ⁺ A+B	7.18	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	365.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	136.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	168.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	38.4	5-1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	17.49	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	32.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.36	0.05-10	1.0	1.5
13.	Sulfate as SO4 (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	61.5	1.0 - 250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	8.63	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.22	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.19	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Analyst

Authorized Signatory

ECOMEN LABORATORIES PVT LTD.

Flat No. 8, 2nd Floor, Arif Chamber-V. Sector H, Aliganj, Lucknow - 225 024 LABORATORIESP Phone No. : (91-522) 2745282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Malgaon Village – Hand Pump
Sample ID Code	: ELW-12590

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
				- 100	Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	BDL	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.38	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	АРНА, 23 rd Ed. 2017, 2540-C	569.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	166.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	212.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	449.6	5-1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	21.38	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	28.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.34	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	67.4	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ B	21.2	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.16	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	BDL	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.20	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Analyst

Authorized Signatory

ECOMEN

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1ZI An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	:	M/s. Prism Johnson Ltd.
Address of the Company	:	Village Mankahari, Tehsil Rampur Baghelan
		Distt.Satna (M.P.)
Sampling Method	:	APHA/ IS: 3025
Sample Collected by	:	Mr.Maan Singh
Sample Quantity	:	As per requirement.
Date of Sampling	:	12.11.2020
Date of Receiving	:	15.11.2020
Date of Analysis	:	15.11.2020 to 25.11.2020
Source of Sample	:	Badarkha Village – Bore Well
Sample ID Code	:	ELW-12591
1		

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.43	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.11	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	571.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	152.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	204.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	52.8	5-1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	17.49	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	24.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.20	0.05-10	1.0	1.5
13.	Sulfate as SO4 (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	93.3	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	12.3	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.21	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.26	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.12	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ECOMEN

Flat No. 8, 2nd Floor, Arif Chamber-V. Sector H, Aliganj, Lucknow - 225 024 LABORATORIESP Phone No. : (91-522) 2745282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Mankahari Village – Hand Pump
Sample ID Code	: ELW-12592

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.05	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.21	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	678.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	180.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	296.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	76.8	5-1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	25.27	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	50.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.48	0.05-10	1.0	1.5
13.	Sulfate as SO4 (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	98.0	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ B	13.4	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.22	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.21	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.17	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ECOMEN

Flat No. 8, 2nd Floor, Arif Chamber-V. Sector H, Aliganj, Lucknow - 225 024 LABORATORIESP Phone No. : (91-522) 2745282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	:	M/s. Prism Johnson Ltd.
Address of the Company	:	Village Mankahari, Tehsil Rampur Baghelan
		Distt.Satna (M.P.)
Sampling Method	:	APHA/ IS: 3025
Sample Collected by	:	Mr.Maan Singh
Sample Quantity	:	As per requirement.
Date of Sampling	:	12.11.2020
Date of Receiving	:	15.11.2020
Date of Analysis	:	15.11.2020 to 25.11.2020
Source of Sample	:	PCL Colony Supply Water – Bore Well
Sample ID Code	:	ELW-12593

SI. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.21	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	6.97	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	601.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	140.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	284.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	72.0	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	25.27	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	64.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.37	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	108.0	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	13.26	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.12	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	BDL	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.23	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested.BDL = Below Detection Limit

Authorized Signatory

ECOMEN

Flat No. 8, 2nd Floor, Arif Chamber-V. Sector H, Aliganj, Lucknow - 225 024 LABORATORIESP Phone No. : (91-522) 2745282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09 TEST

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	v: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Mines Site Office HinautiSijatah
Sample ID Code	: ELW-12594

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.20	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.59	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	486.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	152.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	220.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	58.4	5-1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	17.98	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	40.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.29	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	48.8	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	9.21	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.24	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.09	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ECOMEN

Flat No. 8, 2nd Floor, Arif Chamber-V. Sector H, Aliganj, Lucknow - 225 024 LABORATORIESP Phone No. : (91-522) 2745282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	v: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Chullhi Village – Bore Well
Sample ID Code	: ELW-12595

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.03	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.28	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	431.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	158.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	266.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	54.4	5-1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	31.59	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	78.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.39	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	105.5	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ B	16.1	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.20	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.22	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.17	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ECOMEN

Flat No. 8, 2nd Floor, Arif Chamber-V. Sector H, Aliganj, Lucknow - 225 024 LABORATORIESP Phone No. : (91-522) 2745282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.	
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan	
	Distt.Satna (M.P.)	
Sampling Method	: APHA/ IS: 3025	
Sample Collected by	: Mr.Maan Singh	
Sample Quantity	: As per requirement.	
Date of Sampling	: 12.11.2020	
Date of Receiving	: 15.11.2020	
Date of Analysis	: 15.11.2020 to 25.11.2020	
Source of Sample	: Hinauta Village – Bore Well	
Sample ID Code	: ELW-12596	

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDA 10500:1991(Re	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.32	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.53	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	390.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	144.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	228.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	59.2	5-1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	19.44	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	36.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.37	0.05-10	1.0	1.5
13.	Sulfate as SO4 (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	98.3	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ B	9.5	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.09	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.20	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.12	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ECOMEN

Flat No. 8, 2nd Floor, Arif Chamber-V. Sector H, Aliganj, Lucknow - 225 024 LABORATORIESP Phone No. : (91-522) 2745282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Bore well at Project Office
Sample ID Code	: ELW-12597

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDA 10500:1991(Ra	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.22	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.25	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	344.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	136.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	204.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	46.4	5-1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	21.38	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	51.1	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.39	0.05-10	1.0	1.5
13.	Sulfate as SO4 (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ² E	69.5	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ B	17.5	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.16	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.26	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.20	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ECOMEN

Flat No. 8, 2nd Floor, Arif Chamber-V. Sector H, Aliganj, Lucknow - 225 024 LABORATORIESP Phone No. : (91-522) 2745282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Nam	e of the Company	:	: M/s. Prism Johnson Ltd.	
Add	ress of the Company	:	: Village Mankahari, Tehsil Rampur Baghelan	
			Distt.Satna (M.P.)	
Sam	pling Method	:	: APHA/ IS: 3025	
Sam	ple Collected by	:	: Mr.Maan Singh	
Sam	ple Quantity	:	: As per requirement.	
Date	of Sampling	:	: 12.11.2020	
Date	of Receiving	:	: 15.11.2020	
Date	of Analysis	:	: 15.11.2020 to 25.11.2020	
Sour	ce of Sample	:	: Plant Pump House	
Sam	ple ID Code	:	: ELW-12598	

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	<1.0	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.24	2.0 -12	6.5-8.5	No Relax.
6,	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	379.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	124.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	216.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	56.0	5-1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	18.46	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	48.02	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.30	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	43.22	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ B	12.6	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.17	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.27	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.10	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ECOMEN

Flat No. 8, 2nd Floor, Arif Chamber-V. Sector H, Aliganj, Lucknow - 225 024 LABORATORIESP Phone No. : (91-522) 2745282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Packing Plant Unit-I
Sample ID Code	: ELW-12599

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
	<u>a</u>			- 100	Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.05	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.37	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	343.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	128.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	220.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	57.6	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	18.46	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	52.2	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.36	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	49.6	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ B	17.4	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.13	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.23	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.16	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested.BDL = Below Detection Limit

Authorized Signatory

ECOMEN

Flat No. 8, 2nd Floor, Arif Chamber-V. Sector H, Aliganj, Lucknow - 225 024 LABORATORIESP Phone No. : (91-522) 2745282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	v: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Sijhata Village – Bore Well
Sample ID Code	: ELW-12600

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDA 10500:1991(Re	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.28	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.09	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	377.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	140.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	260.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	60.8	5-1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	26.24	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	74.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.37	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	91.1	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ B	8.63	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.13	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.26	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.14	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

FORMAT NO. ECO/QS/FORMAT/23 REPORT NO: ECO LAB/Piezo/GW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

REPORT OF WATER LEVEL MEASUREMENT

Name of the Customer Address of the Customer	 M/s. Prism Johnson Ltd. Village - Mankahari, Tehsil - Rampur Baghelan
Maaauuan arat har	Distt.Satna (M.P.)
Measurement by	: Mr. Maan Singh
Date of Measurement	: November 12 th , 2020

SI. No.	Piezometer Name.	Water Level (meter)
1.	Colony Gate	14.5
2.	Behind B Block	6.2
3.	Behind C Block	4.8
4.	Auto Work Shop	14.3
5.	In Front Den	5.1
6.	Rose Garden near boundary	20.4
7.	Rose Garden near Road	16.3
8.	Western Block Mines	18.3
9.	Near New Magzine Mines	12.5
10.	Mankahari Mines	16.7
11.	Mines near Ramprasan	8.5
12.	Piezo No12	12.5
13.	Piezo Rose Garden	20.4
14.	Piezo Rose Garden Near Road	16.3

Analyst

Authorized Signatory

anager (O)

AIR QUALITY MONITORING REPORT FOR MINES MONTH - MARCH YEAR-2021

I NAME & ADDRESS OF FACTORY

2 NAME OF PERSON PREPARED THE REPORT

3 AMBIENT AIR QUALITY MONITORING 1. DURATION

2. DISTANCE FROM FACTORY

3. WIND DIRECTION

PRISM CEMENT LIMESTONE MINES PRISM JOHNSON LTD DISTT : SATNA (M.P.)- 485111 POST : BATHIA VILLAGE: MANKAHARI, HINAUTI & SIJAHATA

Sumitabh Dwivedi

LOCATION (2) - Near Western side ML boundary (Piller No. 14) of ML area LOCATION (1) - SW (BP No. 18) 8X3=24 Hrs. LOCATION (3) - Near Mankahari Village

MENTIONED IN THE TABLE

LOCATION (4) - Near Hinouti Village

Location (3) Location (4) Location (4) PM2.5 PM10 SO2 NOX CO PM2.5 PM(0 SO2 NOX CO PM2.5 PM(0 SO2 NOX CO P 3 ug/M3 ug/M3	-	BUL	-	-	-	CC:07	DDL	10,01	Pril 19	1010	20102	an an an						1			100 20	and addee not the state state	N Dala
Date PM2.5 PM10 SO2 NOX CO PM2.5 PM10 SO2 NOX	-	TITLE	-1	-1	-	20 76	INIC	12 20	242	TT 02	CL >C	RDI	37.21	33 4	62.47	31.76	BDL				1 32.34	17'50'07	2
Date PM2.5 PM10 SO2 NOX CO PM2.5 PM10 SO2 NOX	S	BDL	-	-	-	95.97	BDL	33.11		29.09	1.07	DUL	1.00	470	10.00	10.00	arres o		+	t	22.2	10 00 00	
Date PM2.5 PM10 SO2 NOX CO PM2.5 PM10 SO2 NOX		-		T	-	-	TINT		16.75	20.00	121	DINI	N AL	J. CE	44 DA	12 40	RDI				34.55	06.03.21	-
Date PM2.5 PM10 SO2 NOX CO usd/M3 usd/	From	US/M3			-		sw/Bn	1	cwign	curlen	cwan	-	-	CIM Rn	CIAL BO	10	Tat Ber		ł	t	0		-
Date PM2.5 PM10 SO2 NOX CO PM2.5 PM10 SO2 NOX		-	Т	т				-	11 11	A 43	C. W	-	_	CA Man	CAN WILL	-	Hanks		EWJ011		ug/M3		
Date PM0 6 PM10 600 MOV 00 monol monol monol and 1 Location (3) Location (4)	Direct	8	XOX	502	OlMa	PM2.5	00	XON	302	PMIO	PM2.5	-	XON	-	1 PMID	PML.	00		+	÷		ALM CT	
Location (1) Location (2) Location (3) I newton (4)			11	through the	1				3			+	-		- marin	111 12 0	2	NUN		DIMA	PMO S	Date	No.
	10/00		42	institut 1					9	Lo.			(2)	ocation				(1)	ocation	-	Ī		100

Sumitabh Dwivedi warden

Prism Johnson Ltd. Satna (M.P.) Manager- Environment

¢

Sr. General Manager Prism Johnson Ltd. Satna (M.P.) Manoj Kumar Kashyap

AIR QUALITY MONITORING REPORT FOR MINES MONTH - FEBRUARY YEAR-2021

PRISM JOHNSON LTD PRISM CEMENT LIMESTONE MINES

VILLAGE: MANKAHARI, HINAUTI & SIJAHATA

DISTT : SATNA (M.P.)- 485111

POST : BATHIA

I NAME & ADDRESS OF FACTORY

2 NAME OF PERSON PREPARED THE REPORT

3 AMBIENT AIR QUALITY MONITORING 1. DURATION 2. DISTANCE FROM FACTORY

3. WIND DIRECTION

8X3=24 Hrs. Sumitabh Dwivedi

LOCATION (4) - Near Hinouti Village LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area LOCATION (3) - Near Mankahari Village LOCATION (1) - SW (BP No. 18)

MENTIONED IN THE TABLE

802-8			-		100	Na	
Senow D	-		+		ľ		
Detectable	17 20.72	17.70.10			LURIC	Put	
Umit	36.72	33.24	CINING	TIN AND	PN82.5	No and a	
	69.16	20.3	CINIBIA		PMIO	C	
	35.35	34.02	ug NI3		SOS	Deation (
	38.24	37.21	UN da	Control 1	NUN	1)	
	BDL	BDL	-uning	100	3		
1	29.49	32.37	Ungun O	C.MUL	DA 11 2		
	66 17	69.25	un M3	LUN10		1	
10.1	17.4	33.42	ue/M3	SO2	Taxana -	Scation F	
00.00	80 YL	80 72	Invite .	NOX	1	31	
DUTC	DIDI	BDI	SUNUT	8			
17.07	16.17	CLUMIN	C TALL	> CIVID			
15.80	86.00	ug/MJS	O I MILL	DATIO	L		
28.14	27.01	ug/M3	ZUC	500	ocation (
29.12	27.5	EW/Bn	XON	11000	3)		
RDI	BDL	ug/M3	00				
20 10	30.97	ug/M3	PM2.5		1		
21 13	61.66	UN/Bn	PMIO				
20 20	29.7	EW/gu	S02	Location (4)			
	5E 0E	ug/M3	NOX	1(4)			
000	RDI	EWan EWan EWan EWan EWan EWan EWan	00				
(ME)			Dispetie	Wind			
	1	12	1		1		

Sumicably Dwilled INNEO

Manager- Environment Prism Johnson Ltd. Satna (M.P.)

Manoj Kumar Kashyap Sr. General Manager Prism Johnson Ltd. Satna (M.P.)

SE

AIR QUALITY MONITORING REPORT FOR MINES MONTH - JANUARY YEAR-2021

1 NAME & ADDRESS OF FACTORY

2 NAME OF PERSON PREPARED THE REPORT

3 AMBIENT AIR QUALITY MONITORING 1. DURATION

2. DISTANCE FROM FACTORY

3. WIND DIRECTION

PRISM CEMENT LIMESTONE MINES VILLAGE: MANKAHARI, HINAUTI & SIJAHATA DISTT : SATNA (M.P.)- 485111 PRISM JOHNSON LTD POST : BATHIA

Sumitabh Dwivedi

LOCATION (3) - Near Mankahari Village LOCATION (4) - Near Hinouti Village LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area LOCATION (1) - SW (BP No. 18) 8X3=24 Hrs.

MENTIONED IN THE TABLE

						101010		41.11		20.1	5DL	38.43	31,24	DL 32.71 71.85 31.24 38.45 E	32.7	BE	6.45 42.47	45 30	11 71	23.01.21 34.11 71.45 36.45	2
SE	RDL	30.05	29.7	58.76	29 61 58 76	RDI	SLC	LL LC	20 10	707	PI			Tat and		. 4.0.4.0	1.14 U.V.	04 0	01 04.0	C 17710160	100
20				10100	41.11	DDD	-	CC:07		21.82	EL.	36.4	1 30.93	73 3	20	R	0 A 20	C 173	04 21		-
SE	BDL	29.42		18 00	20 10	וחמ		06 70		21 22		-			Q	101	CIAL CIAL	THI CIAL	Sin CIAN	ui ui	
200		-		man files	ANA ANA	CTAT PAT	100	CIALAN		CIN/BIN	VM3	ug/M3	I ug/M3	3 ug/M3	Won E	non	1/011 EVV	NA2 110	NAS IN	and the second se	
FIO	CW/MD	UR/MJ		EW/OIL	LW/MI	1 Man	-				1			and the second division of the second divisio			111 111	ATTA IN	ATTEN DISTA	DARG IN	2
There	~ ~ ~				A DESCRIPTION OF	00	1001	200	CINIT	L'VIZ'D	0	NOX	1 SO2	S PMID	PM2	2	ON NO	110 0	JO A DN	Data D	
Direc	00	XON		PM10	PM2 5	00	NOX	cO3	DIAIO	DUAD C	3	the second					TANK TAN	TANANAT			10
PH2 LAL	NA	and and a second		And and a state of the state of				POULON I+	IN			(2)	ocation				inn (1)	Innat		The second	01
ILLAN.		(4)	ocation					vation (3)	1			1AV	NOOD WORK OF THE								

BDL - Below Detectable Limit

Sumitabh Dwivedi

Prism Johnson Ltd. Satna (M.P.) Manager- Environment

Manoj Kumar Kashyap

Sr. General Manager Prism Johnson Ltd. Satna (M.P.)

AIR QUALITY MONITORING REPORT FOR MINES MONTH - DECEMBER YEAR-2020

1

I NAME & ADDRESS OF FACTORY

2 NAME OF PERSON PREPARED THE REPORT

3 AMBIENT AIR QUALITY MONITORING

2. DISTANCE FROM FACTORY 1. DURATION

3. WIND DIRECTION

PRISM JOHNSON LTD PRISM CEMENT LIMESTONE MINES DISTT : SATNA (M.P.)- 485111 POST : BATHIA VILLAGE: MANKAHARI, HINAUTI & SUAHATA

Sumitabh Dwivedi

LOCATION (4) - Near Hinouti Village LOCATION (3) - Near Mankahari Village LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area LOCATION (1) - SW (BP No. 18) 8X3=24 Hrs.

MENTIONED IN THE TABLE

ug/M3 ug/M3 ug/M3 ug/M3 From 63.39 27.01 30.05 BDL SE	+-		26.96	22.28	60.31	30.7		34.16	31.59	-				33,14	66.59	36	24.12.20	2
EWign SWign SWign	-	BDL	29.12	24.3	57.09	29.78	BDL	34.72 41.6	34.72	4 68.87	33.94		40.45	36.45	70.74	39.13	10.12.20	1
	Bn sw/Bn	-	ug/M3	ug/M3	ug/M3	ug/M3	1000	B ug/M3	3 ug/M3	-			_	ug/M3	ug/M3	ug/M3		
VON TOC	-	+	XON	202	PMIO	PM2.5	CO	NOX	-	.5 PM10	PM2.	CO	<u> </u>	SO2	PM10	PM2.5	Date	No.
NUN LUN	-1		- inc	200				+	LUCATION	CONTRACTOR OF		1	10	TOP GUOII	-			10
Location (4) Wind			0	cation (3	15			101	Innation				111	anting	1	1		2

BDL - Below Detectable Limit

Prism Johnson Ltd. Satna (M.P.) Manager- Environment Sumitabh Dwivedi

Manoj Kumar Kashyap Sr. General Manager Prism Johnson Ltd. Satna (M.P.)

AIR QUALITY MONITORING REPORT FOR MINES MONTH - NOVEMBER YEAR-2020

1 NAME & ADDRESS OF FACTORY

2 NAME OF PERSON PREPARED THE REPORT

3 AMBIENT AIR QUALITY MONITORING

1. DURATION

2. DISTANCE FROM FACTORY

3, WIND DIRECTION

VILLAGE: MANKAHARI, HINAUTI & SIJAHATA DISTT : SATNA (M.P.)- 485111 PRISM CEMENT LIMESTONE MINES PRISM JOHNSON LTD POST : BATHIA

Sumitabh Dwivedi

LOCATION (4) - Near Hinouti Village LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area LOCATION (1) - SW (BP No. 18) LOCATION (3) - Near Mankahari Village 8X3=24 Hrs

MENTIONED IN THE TABLE

No. Date PM2.5 PM10 SO2 NOX CO PM2.5 PM10 SO2	SE	BUL		10.01	COURCE	- Marine	14 64 64													310	rable lin	alow Detec	000-000
(2) Location (3) Location (4) NOX CO PM2.5 PM10 SO2 NOX CO F P <	1100	17171		12 20	22 22	DA CE	BDL	25		22.83	26.07	- IOLA	100.00	1 44100	a la la la la	1.1.4.1						Aller States	A IUI
Image: 20 to	AA C	DDL		4110	1100					22 114	20 00	I DON	00.01	11111	1 36 1	36.4	BDE	41.0	K1.90	06,10	27.16	ある したいかく	
(2) Location (3) Location (4) NOX CO PM2.5 PM10 SO2 <	0110	INIT		24.3	0 45	30.7	RDL	20.90		Chi tel	03120	110101	P. 1. 1. 1. 1.				117.	11	20 10	76.67	20 70	0611 06	2
Image: 20 march Location (3) Location (4) Location (4) NOX CO PM2.5 PM10 SO2 NOX CO PM2.5 <t< td=""><td>A PROPERTY A</td><td>and a start</td><td></td><td>- Marine</td><td>K</td><td></td><td>and a state of the state of the</td><td>N'D NY</td><td></td><td>SI V2</td><td>20 26</td><td>1 RDI</td><td>1 40 45</td><td>1 41 66</td><td>6.66 1.6</td><td>38.4</td><td>I DUL</td><td>76.00</td><td>1100</td><td>ANNO 1</td><td>A POL & M</td><td>A C</td><td>-</td></t<>	A PROPERTY A	and a start		- Marine	K		and a state of the	N'D NY		SI V2	20 26	1 RDI	1 40 45	1 41 66	6.66 1.6	38.4	I DUL	76.00	1100	ANNO 1	A POL & M	A C	-
(2) Location (3) Location (4) NOX CO PM2.5 PM10 SO2 NOX CO	From	100/M2		EW/001	IND/N	CIMMIN	CIAL/NIN	CYALAN		and a state of the	The second second	A A A A A A A A A A A A A A A A A A A	K		-	100	1740 I	10 00	1 22 14	66.87	37 25	08 11 20	
2) Location (3) Location (4) NOX CO PM2.5 PM10 SO2 NOX CO PM2.5 PM10 SO2 NOX CO						- JEAN		LYNIGHT .		FM/00	1 TUN/DU	1 Ug/M3	STW/MI I	TAMPIC .	UNINT C	AY BAN P	Internation 1	and an		ALC: NOT			
(2) Location (3) Location (4) NOX CO PM2.5 PM10 SO2 NOX CO PM2.5 PM10 SO2 NOX CO PM2.5 NOX CO NOX	Difectio	00		2000	OTTAL .	ALL DAMAGE	1 1						1	3	2	2 Davie	A HIG/M	110/M	100/M	5 M//3/1	CIAL/AR		
2) Location (3) Location (4)	No. In the	nn		erna -	PMIN	S CMd	00	NOX		DINU.	C'7TALL	00	WOW!	1 . 1 . 1 . A							CR 41		
DATIS BATIO COS MOX CON Location (2) Location (3) Location (4)	DUR AA		1	A STOREMON AND A STORE AND A				a state		TON A KIN	2 CING	00	NOV	002 10	S PMIL	I PM2	03	NON	7000	O F IMI I	CONTRACT OF	00000	10000
Location (1) Location (2) Location (2)	Wind		4)	neation (C) IIONPAG	E			121	and the second s			2 min	NICK	000	DIATO	2 CIVIL	170440	No
				and the second s					unitioner 12			-	(2)	ocation				VAJ.	TAPETA DATA	-			
																			nontion				102

Prism Johnson Ltd. Satna (MLP.) Manager- Environment Sumitabh Dwivedi

Manoj Kumar Kashyap Sr. General Manager Prism Johnson Ltd. Satna (M.P.)

Sumitabh Dwivedi Manager- Environment Prism Johnson Ltd. Satna (M.P.)	SI Location (1) No. Date PM2.5 PM10 SO2 NOX I 08.10.20 40.36 64.56 28.62 31.46 2 22.10.20 43.48 58.32 32.64 \$7.85 BDL - Below Detectable Limit \$7.85	3. WIND DIRECTION	2. DISTANCE FROM FACTORY	- MANNE OF PERSON PREPARED THE REPORT	3 NAME OF STRATE	I NAME & ADDRESS OF FACTORY	
Manoj Kumar Ka Sr. General Mana Prism Johnson I	CO PM2.5 PM10 SO2 NOX SO3 PM3.5 PM3.5 PM3.5 PM3.5 PM3.5 PM3.5 PM3.5 PM3.5 <th< th=""><th>: MENTIONED IN THE TABLE</th><th> 8X3=24 Hrs. LOCATION (1) - SW (BP No. 18) LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area LOCATION (3) - Near Mankahari Village LOCATION (4) - Near Hinouti Village </th><th>: Sumitabh Dwivedi</th><th>: PRISM JOHNSON LTD PRISM CEMENT LIMESTONE MINES VILLAGE: MANKAHARI, HINAUTI & SIJAHATA POST : BATHIA DISTT : SATNA (M.P.)- 485111</th><th></th><th>AIR QUALITY MONITORING REPORT FOR MINES MONTH - OCTOBER VEAR-2020</th></th<>	: MENTIONED IN THE TABLE	 8X3=24 Hrs. LOCATION (1) - SW (BP No. 18) LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area LOCATION (3) - Near Mankahari Village LOCATION (4) - Near Hinouti Village 	: Sumitabh Dwivedi	: PRISM JOHNSON LTD PRISM CEMENT LIMESTONE MINES VILLAGE: MANKAHARI, HINAUTI & SIJAHATA POST : BATHIA DISTT : SATNA (M.P.)- 485111		AIR QUALITY MONITORING REPORT FOR MINES MONTH - OCTOBER VEAR-2020

AMBIENT NOISE MONITORING REPORT

MONTH - MARCH 2021

1. Name and address of Factory

: PRISM JOHNSON LTD.

Prism Cement Limestone Mines Village- Mankahari, Hinauti & Sijahata Post - Bathia Distt - Satna (M.P)- 485111

2. Name of person prepared the report

Sumitabh Dwivedi

3. Details of noise monitoring

S. No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	19.03.2021	60.87	55.1
2	Near Western side ML boundary (Pillar No. 14) of ML area	19.03.2021	58.22	52.30
3	Mankahari Village	20.03.2021	54.67	48.65
4	Hinouti village	20.03.2021	57.65	50.8

:

:-

Jurali

Sumitabh Dwivedi Manager – Environment

Manoj Kumar Kashyap

Sr. General Manager

AMBIENT NOISE MONITORING REPORT

MONTH – FEBRUARY 2021

1. Name and address of Factory

: PRISM JOHNSON LTD. Prism Cement Limestone Mines Village- Mankahari, Hinauti & Sijahata Post - Bathia Distt - Satna (M.P)- 485111

2. Name of person prepared the report

Sumitabh Dwivedi

3. Details of noise monitoring

S. No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	16.02.21	64.3	55.37
2	Near Western side ML boundary (Pillar No. 14) of ML area	16.02.21	60.72	54.32
3	Mankahari Village	17.02.21	54.82	45.50
4	Hinouti village	17.02.21	58.15	47.57

•

:-

Sumitabh Dwivedi Manager – Environment

Manoj Kumar Kashyap

Sr. General Manager

AMBIENT NOISE MONITORING REPORT

MONTH – JANUARY 2021

1. Name and address of Factory

: PRISM JOHNSON LTD.

Prism Cement Limestone Mines Village- Mankahari, Hinauti & Sijahata Post - Bathia Distt - Satna (M.P)- 485111

2. Name of person prepared the report

Sumitabh Dwivedi

3. Details of noise monitoring

S. No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	19.01.2021	68.25	53.25
2	Near Western side ML boundary (Pillar No. 14) of ML area	19.01.2021	65.10	52.22
3	Mankahari Village	20.01.2021	58.02	49.37
4	Hinouti village	20.01.2021	59.35	50.55

.

:-

Sumitabh¹Dwivedi Manager – Environment

Manoj Kumar Kashyap Sr. General Manager

AMBIENT NOISE MONITORING REPORT

MONTH – DECEMBER 2020

- Name and address of Factory
 PRISM JOHNSON LTD. Prism Cement Limestone Mines Village- Mankahari, Hinauti & Sijahata Post - Bathia Distt - Satna (M.P)- 485111
- 2. Name of person prepared the report : Sumitabh Dwivedi
- 3. Details of noise monitoring

S. No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	25.12.2020	60.57	52.52
2	Near Western side ML boundary (Pillar No. 14) of ML area	25.12.2020	62.30	54.02
3	Mankahari Village	26.12.2020	54.50	47.37
4	Hinouti village	26.12.2020	58.72	52.07

-

Sumitabh Dwivedi Manager – Environment

Manoj Kumar Kashyap Sr. General Manager

AMBIENT NOISE MONITORING REPORT

MONTH -NOVEMBER 2020

1. Name and address of Factory

: PRISM JOHNSON LTD. Prism Cement Limestone Mines Village- Mankahari, Hinauti & Sijahata Post - Bathia Distt - Satna (M.P)- 485111

2. Name of person prepared the report

Sumitabh Dwivedi

3. Details of noise monitoring

:-

•

S. No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	12.11.2020	59.6	52.92
2	Near Western side ML boundary (Pillar No. 14) of ML area	12.11.2020	56.47	53.5
3	Mankahari Village	13.11.2020	53.67	48.52
4	Hinouti village	13.11.2020	53.7	46.21

Sumitabh Dwivedi Manager – Environment

Manoj Kumar Kashyap Sr. General Manager

AMBIENT NOISE MONITORING REPORT

MONTH -OCTOBER 2020

:

1-

1. Name and address of Factory

: PRISM JOHNSON LTD. Prism Cement Limestone Mines Village- Mankahari, Hinauti & Sijahata Post - Bathia Distt - Satna (M.P)- 485111

2. Name of person prepared the report

Sumitabh Dwivedi

3. Details of noise monitoring

S. No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night
1 2	SW (BP No. 18) Near Western side ML boundary	16.10.2020	58.8	<u>Time</u>) 52.1
3	(1 mar No. 14) of ML area	16.10.2020	55.87	51.2
	Mankahari Village Hinouti village	19.10.2020	54.4	50.3
		19.10.2020	52.3	46.0

6

Sumitabh Dwivedi Manager – Environment

Manoj Kumar Kashyap Sr. General Manager